https://www.linkedin.com/feed/update/urn:li:activity:6538449056312762368 Let a, b, c be positive numbers such that $a b c=1$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{a+b+c} \geq 2\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \cdot \frac{1}{a^{2}+b^{2}+c^{2}}$.

Solution by Arkady Alt, San Jose, California, USA.

Since $a b c=1$ implies $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a b+b c+c a$, $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$ and $\frac{3}{a+b+c}=\frac{3 a b c}{a+b+c}$ then original inequality of the problem becomes
(1) $a b+b c+c a-\frac{3 a b c}{a+b+c} \geq \frac{2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}{a^{2}+b^{2}+c^{2}}$.

Assuming, due homogeneity of (1), that $a+b+c=1$ and, denoting $p:=a b+b c+c a, q:=a b c$, we obtain (1) in the form
$p-3 q \geq \frac{2\left(p^{2}-2 q\right)}{1-2 p} \Leftrightarrow \frac{p(1-4 p)+q(1+6 p)}{1-2 p} \geq 0$.
Since $3 p=a b+b c+c a \leq(a+b+c)^{2}=1$ and $9 q \geq 4 p-1$
(Shure's Inequality $\sum a(a-b)(a-c) \geq 0$ in p, q notation and with normalization by $a+b+c=1$) then $1-2 p>0$ and $p(1-4 p)+q(1+6 p) \geq p(1-4 p)+q_{*}(1+6 p)$ where $q_{*}:=\max \left\{0, \frac{4 p-1}{9}\right\}$.
For $p \in[1 / 4,1 / 3]$ we have $p(1-4 p)+q_{*}(1+6 p)=$ $p(1-4 p)+\frac{(4 p-1)(1+6 p)}{9}=\frac{1}{9}(1-3 p)(4 p-1) \geq 0$ and for $p \in(0,1 / 4]$ we have $p(1-4 p)+q_{*}(1+6 p)=p(1-4 p) \geq 0$.

